Publications

You might be instead be looking for my arXiv papers list or Inspire record. Alternatively, you could read on...

Preprints

Publications

[1]
Lauri Niemi, Kari Rummukainen, Riikka Seppä, and David J. Weir. Infrared physics of the 3D SU(2) adjoint Higgs model at the crossover transition. JHEP, 02:212, 2023. (doi:10.1007/JHEP02(2023)212)
[2]
Pierre Auclair, Chiara Caprini, Daniel Cutting, Mark Hindmarsh, Kari Rummukainen, Danièle A. Steer, and David J. Weir. Generation of gravitational waves from freely decaying turbulence. JCAP, 09:029, 2022. (doi:10.1088/1475-7516/2022/09/029)
[3]
Robert Caldwell and others. Detection of early-universe gravitational-wave signatures and fundamental physics. Gen. Rel. Grav., 54(12):156, 2022. (doi:10.1007/s10714-022-03027-x)
[4]
Daniel Cutting, Essi Vilhonen, and David J. Weir. Droplet collapse during strongly supercooled transitions. Phys. Rev. D, 106(10):103524, 2022. (doi:10.1103/PhysRevD.106.103524)
[5]
Jani Dahl, Mark Hindmarsh, Kari Rummukainen, and David J. Weir. Decay of acoustic turbulence in two dimensions and implications for cosmological gravitational waves. Phys. Rev. D, 106(6):063511, 2022. (doi:10.1103/PhysRevD.106.063511)
[6]
Pau Amaro Seoane and others. The effect of mission duration on LISA science objectives. Gen. Rel. Grav., 54(1):3, 2022. (doi:10.1007/s10714-021-02889-x)
[7]
Oliver Gould, Satumaaria Sukuvaara, and David Weir. Vacuum bubble collisions: From microphysics to gravitational waves. Phys. Rev. D, 104(7):075039, 2021. (doi:10.1103/PhysRevD.104.075039)
[8]
Lauri Niemi, Michael Ramsey-Musolf, Tuomas V. I. Tenkanen, and David J. Weir. Thermodynamics of a two-step electroweak phase transition. Phys. Rev. Lett., 126(17):171802, 2021. (doi:10.1103/PhysRevLett.126.171802)
[9]
Daniel Cutting, Elba Granados Escartin, Mark Hindmarsh, and David J. Weir. Gravitational waves from vacuum first order phase transitions II: from thin to thick walls. Phys. Rev. D, 103(2):023531, 2021. (doi:10.1103/PhysRevD.103.023531)
[10]
Daniel Cutting, Mark Hindmarsh, and David J. Weir. Vorticity, kinetic energy, and suppressed gravitational wave production in strong first order phase transitions. Phys. Rev. Lett., 125(2):021302, 2020. (doi:10.1103/PhysRevLett.125.021302)
[11]
Chiara Caprini and others. Detecting gravitational waves from cosmological phase transitions with LISA: an update. JCAP, 03:024, 2020. (doi:10.1088/1475-7516/2020/03/024)
[12]
Oliver Gould, Jonathan Kozaczuk, Lauri Niemi, Michael J. Ramsey-Musolf, Tuomas V. I. Tenkanen, and David J. Weir. Nonperturbative analysis of the gravitational waves from a first-order electroweak phase transition. Phys. Rev., D100(11):115024, 2019. (doi:10.1103/PhysRevD.100.115024)
[13]
Lauri Niemi, Hiren H. Patel, Michael J. Ramsey-Musolf, Tuomas V. I. Tenkanen, and David J. Weir. Electroweak phase transition in the real triplet extension of the SM: Dimensional reduction. Phys. Rev., D100(3):035002, 2019. (doi:10.1103/PhysRevD.100.035002)
[14]
Tyler Gorda, Andreas Helset, Lauri Niemi, Tuomas V. I. Tenkanen, and David J. Weir. Three-dimensional effective theories for the two Higgs doublet model at high temperature. JHEP, 02:081, 2019. (doi:10.1007/JHEP02(2019)081)
[15]
Mark Hindmarsh, Anna Kormu, Asier Lopez-Eiguren, and David J. Weir. Scaling in necklaces of monopoles and semipoles. Phys. Rev., D98(10):103533, 2018. (doi:10.1103/PhysRevD.98.103533)
[16]
Daniel Cutting, Mark Hindmarsh, and David J. Weir. Gravitational waves from vacuum first-order phase transitions: from the envelope to the lattice. Phys. Rev., D97(12):123513, 2018. (doi:10.1103/PhysRevD.97.123513)
[17]
Jens O. Andersen, Tyler Gorda, Andreas Helset, Lauri Niemi, Tuomas V. I. Tenkanen, Anders Tranberg, Aleksi Vuorinen, and David J. Weir. Nonperturbative Analysis of the Electroweak Phase Transition in the Two Higgs Doublet Model. Phys. Rev. Lett., 121(19):191802, 2018. (doi:10.1103/PhysRevLett.121.191802)
[18]
Ray J. Rivers, D. A. Steer, Chi-Yong Lin, Da-Shin Lee, and D. J. Weir. When are two fermions a simple boson? New Gross-Pitaevskii actions for cold Fermi condensates. Annals of Physics, 396:495–516, September 2018. (doi:10.1016/j.aop.2018.07.027)
[19]
Anders Tranberg, Sara Tähtinen, and David J. Weir. Gravitational waves from non-Abelian gauge fields at a tachyonic transition. JCAP, 1804(04):012, 2018. (doi:10.1088/1475-7516/2018/04/012)
[20]
David J. Weir. Gravitational waves from a first order electroweak phase transition: a brief review. Phil. Trans. Roy. Soc. Lond., A376:20170126, 2018. (doi:10.1098/rsta.2017.0126)
[21]
Mark Hindmarsh, Stephan J. Huber, Kari Rummukainen, and David J. Weir. Shape of the acoustic gravitational wave power spectrum from a first order phase transition. Phys. Rev., D96(10):103520, 2017. (doi:10.1103/PhysRevD.96.103520)
[22]
Mark Hindmarsh, Kari Rummukainen, and David J. Weir. Numerical simulations of necklaces in SU(2) gauge-Higgs field theory. Phys. Rev., D95(6):063520, 2017. (doi:10.1103/PhysRevD.95.063520)
[23]
Tomáš Brauner, Tuomas V. I. Tenkanen, Anders Tranberg, Aleksi Vuorinen, and David J. Weir. Dimensional reduction of the Standard Model coupled to a new singlet scalar field. JHEP, 03:007, 2017. (doi:10.1007/JHEP03(2017)007)
[24]
Mark Hindmarsh, Kari Rummukainen, and David J. Weir. New solutions for non-Abelian cosmic strings. Phys. Rev. Lett., 117(25):251601, 2016. (doi:10.1103/PhysRevLett.117.251601)
[25]
David J. Weir. Revisiting the envelope approximation: gravitational waves from bubble collisions. Phys. Rev., D93(12):124037, 2016. (doi:10.1103/PhysRevD.93.124037)
[26]
Chiara Caprini and others. Science with the space-based interferometer eLISA. II: Gravitational waves from cosmological phase transitions. JCAP, 1604(04):001, 2016. (doi:10.1088/1475-7516/2016/04/001)
[27]
Kari Enqvist, Sami Nurmi, Stanislav Rusak, and David Weir. Lattice Calculation of the Decay of Primordial Higgs Condensate. JCAP, 1602(02):057, 2016. (doi:10.1088/1475-7516/2016/02/057)
[28]
Mark Hindmarsh, Stephan J. Huber, Kari Rummukainen, and David J. Weir. Numerical simulations of acoustically generated gravitational waves at a first order phase transition. Phys. Rev., D92(12):123009, 2015. (doi:10.1103/PhysRevD.92.123009)
[29]
Mark Hindmarsh, Kari Rummukainen, Tuomas V. I. Tenkanen, and David J. Weir. Improving cosmic string network simulations. Phys.Rev., D90:043539, 2014. (doi:10.1103/PhysRevD.90.043539)
[30]
Anders Tranberg and David J. Weir. On the quantum stability of Q-balls. JHEP, 04:184, 2014. (doi:10.1007/JHEP04(2014)184)
[31]
Mark Hindmarsh, Stephan J. Huber, Kari Rummukainen, and David J. Weir. Gravitational waves from the sound of a first order phase transition. Phys.Rev.Lett., 112:041301, 2014. (doi:10.1103/PhysRevLett.112.041301)
[32]
David J. Weir, Roberto Monaco, Valery P. Koshelets, Jespre Mygind, and Ray J. Rivers. Gaussianity revisited: Exploring the Kibble-Zurek mechanism with superconducting rings. J.Phys.: Condens. Matter, 25:404207, 2013. (doi:10.1088/0953-8984/25/40/404207)
[33]
Arttu Rajantie, Kari Rummukainen, and David J. Weir. Form factor and width of a quantum string. Phys.Rev., D86:125040, 2012. (doi:10.1103/PhysRevD.86.125040)
[34]
Carl M. Bender and David J. Weir. PT phase transition in multidimensional quantum systems. J.Phys., A45:425303, 2012. (doi:10.1088/1751-8113/45/42/425303)
[35]
David J. Weir, Roberto Monaco, and Ray J. Rivers. Defect Formation in Superconducting Rings: External Fields and Finite-Size Effects. J. Low Temp. Phys., 2012. (doi:10.1007/s10909-012-0681-9)
[36]
Jutho Haegeman, Bogdan Pirvu, David J. Weir, J. Ignacio Cirac, Tobias J. Osborne, Henri Verschelde, and Frank Verstraete. Variational matrix product ansatz for dispersion relations. Phys.Rev., B85:100408, 2012. (doi:10.1103/PhysRevB.85.100408)
[37]
Arttu Rajantie and David J. Weir. Nonperturbative study of the 't Hooft-Polyakov monopole form factors. Phys.Rev., D85:025003, 2012. (doi:10.1103/PhysRevD.85.025003)
[38]
Arttu Rajantie and David J. Weir. Soliton form factors from lattice simulations. Phys.Rev., D82:111502, 2010. (doi:10.1103/PhysRevD.82.111502)
[39]
David J. Weir. Studying a relativistic field theory at finite chemical potential with the density matrix renormalization group. Phys.Rev., D82:025003, 2010. (doi:10.1103/PhysRevD.82.025003)
[40]
Arttu Rajantie and David J. Weir. Quantum kink and its excitations. JHEP, 0904:068, 2009. (doi:10.1088/1126-6708/2009/04/068)

Proceedings

[1]
Jean-Baptiste Bayle and others. Legacy of the First Workshop on Gravitational Wave Astrophysics for Early Career Scientists. In Workshop on Gravitational Wave Astrophysics for Early Career Scientists, 11 2021.
[2]
Lauri Niemi, Kari Rummukainen, Riikka Seppä, and David Weir. Infrared physics of the SU(2) Georgi-Glashow crossover transition. In 38th International Symposium on Lattice Field Theory, 11 2021.
[3]
Joni M. Suorsa, Viljami Leino, Jarno Rantaharju, Teemu Rantalaiho, Kari Rummukainen, Kimmo Tuominen, and David J. Weir. Mass anomalous dimension of SU(2) with Nf=8 using the spectral density method. In Proceedings, 33rd International Symposium on Lattice Field Theory (Lattice 2015), 2015.
[4]
David J. Weir, Simon Catterall, and Dhagash Mehta. Eigenvalue spectrum of lattice N = 4 super Yang-Mills. PoS, LATTICE2013:093, 2014.
[5]
Joni M. Suorsa, T. Rantalaiho, K. Rummukainen, K. Splittorff, and David J. Weir. Investigating the Sharpe-Singleton scenario on the lattice by direct eigenvalue computation. PoS, LATTICE2013:118, 2014.
[6]
David J. Weir and Ray J. Rivers. Fluxoid formation: size effects and non-equilibrium universality. Journal of Physics Conference Series, 286(1):012056, 2011. (doi:10.1088/1742-6596/286/1/012056)
[7]
Carlos Aguado Sanchez, Jakob Blomer, Predrag Buncic, Gang Chen, John Ellis, and others. Volunteer Clouds and citizen cyberscience for LHC physics. J.Phys.Conf.Ser., 331:062022, 2011. (doi:10.1088/1742-6596/331/6/062022)
[8]
David J. Weir and Arttu Rajantie. Form factors and excitations of topological solitons. AIP Conf.Proc., 1343:200–202, 2011. (doi:10.1063/1.3574976)
[9]
Ben Segal, Predrag Buncic, David Garcia Quintas, Carlos Aguado Sanchez, Jakob Blomer, and others. LHC cloud computing with CernVM. PoS, ACAT2010:004, 2010.
[10]
Carl M. Bender, Joshua Feinberg, Daniel W. Hook, and David J. Weir. Chaotic systems in complex phase space. Pramana, 73:453–470, 2009. (doi:10.1007/s12043-009-0099-3)