Could BSM physics produce a stochastic background?
First-order phase transitions are a complementary probe of new physics that might be
Out of sight of particle physics experiments, or
At higher energy scales than colliders can reach
[what BSM physics might there be?]Particle physics model
$\Downarrow \mathcal{L}_{4\mathrm{d}}$
Dimensional reduction
$\Downarrow \mathcal{L}_{3\mathrm{d}}$
Phase transition parameters from lattice simulations
$\Downarrow \alpha, \beta, T_N, v_\mathrm{w}, \ldots$
Real time cosmological simulations
$\Downarrow \Omega_\text{gw}(f)$ Cosmological GW background [what would we see as a result?]
Particle physics model
$\Downarrow \mathcal{L}_{4\mathrm{d}}$
Dimensional reduction
$\Downarrow \mathcal{L}_{3\mathrm{d}}$
Phase transition parameters from lattice simulations
$\Downarrow \alpha, \beta, T_N, v_\mathrm{w}, \ldots$
Real time cosmological simulations
$\Downarrow \Omega_\text{gw}(f)$ Cosmological GW background
Particle physics model
$\Downarrow \mathcal{L}_{4\mathrm{d}}$
Dimensional reduction
$\Downarrow \mathcal{L}_{3\mathrm{d}}$
Phase transition parameters from lattice simulations
$\Downarrow \alpha, \beta, T_N, v_\mathrm{w}, \ldots$
Real time cosmological simulations
$\Downarrow \Omega_\text{gw}(f)$ Cosmological GW background
Need for accuracy: $\Sigma$SM (triplet) example arXiv:2005.11332
Perturbation theory out by 10% or more! Talks by Anna Kormu, Tuomas Tenkanen
Particle physics model ✅
$\Downarrow \mathcal{L}_{4\mathrm{d}}$
Dimensional reduction ✅
$\Downarrow \mathcal{L}_{3\mathrm{d}}$
Phase transition parameters from lattice simulations ✅
$\Downarrow \alpha, \beta, T_N, v_\mathrm{w}, \ldots$
Real time cosmological simulations
$\Downarrow \Omega_\text{gw}(f)$ Cosmological GW background
[what BSM physics might there be?]Particle physics model ✅
$\Downarrow \mathcal{L}_{4\mathrm{d}}$
Dimensional reduction ✅
$\Downarrow \mathcal{L}_{3\mathrm{d}}$
Phase transition parameters from lattice simulations ✅
$\Downarrow \alpha, \beta, T_N, v_\mathrm{w}, \ldots$
Real time cosmological simulations
$\Downarrow \Omega_\text{gw}(f)$ Cosmological GW background [what would we see as a result?]
Dynamics of phase transitions (probably) rely on relatively few parameters
Including:
$\alpha$, the phase transition strength
$\beta$, the inverse phase transition duration
$v_\mathrm{w}$, the speed at which bubbles expand
...and $T_N$, the nucleation temperature
Phase transition = out of equilibrium
Bubbles nucleate (temperature $T_\mathrm{N}$, on timescale $\beta^{-1}$)
Bubble walls expand in a plasma (at velocity $v_\mathrm{w}$)
Reaction fronts form around walls (with strength $\alpha$)
What about expanding bubbles in full GR?
➤ Talk by Lorenzo Giombi
Can lattice simulations help us compute the nucleation rate (and hence $\beta$) more accurately?
➤ Talk by Anna Kormu
How do we reconstruct phase transition parameters from GW data?
➤ Talk by Deanna C. Hooper
Do we really need lattice simulations after all?
➤ Talk by Tuomas Tenkanen
How does the formation of acoustic turbulence affect the GW power spectrum?
➤ Talk by Jani Dahl
Thanks
Students: Jani Dahl, Jenni Häkkinen, Anna Kormu, Tiina Minkkinen,
Satumaaria Sukuvaara, Essi Vilhonen
Postdocs:
Deanna C. Hooper, Lauri Niemi
Collaborators:
Daniel Cutting, Oliver Gould, Jonathan Kozaczuk, Mark Hindmarsh,
Stephan Huber, Hiren Patel, Michael Ramsey-Musolf, Kari Rummukainen, Tuomas Tenkanen
What I want you to remember
Early universe processes can probe BSM physics
... but we need precise predictions of key parameters
$\Rightarrow$ lattice Monte Carlo simulations of phase transitions