Aim of today's talk:
A brief introduction to the simulations needed to understand early universe phase transitions
Particle physics model
$\Downarrow \mathcal{L}_{4\mathrm{d}}$
Dimensional reduction
$\Downarrow \mathcal{L}_{3\mathrm{d}}$
Phase transition parameters from lattice simulations
$\Downarrow \alpha, \beta, T_N, \ldots$
Real time cosmological simulations
$\Downarrow \Omega_\text{gw}(f)$
Cosmological GW background
Particle physics model
$\Downarrow \mathcal{L}_{4\mathrm{d}}$
Dimensional reduction
$\Downarrow \mathcal{L}_{3\mathrm{d}}$
Phase transition parameters from lattice simulations
$\Downarrow \alpha, \beta, T_N, \ldots$
Real time cosmological simulations
$\Downarrow \Omega_\text{gw}(f)$
Cosmological GW background
Focus on extensions of the Standard Model
$$ \mathcal{L}_{4\mathrm{d}} =
\mathcal{L}_\text{SM}[\text{SM fields}]
\color{red}{+ \mathcal{L}_\text{BSM}[\text{SM fields},\ldots ?]} $$
SM electroweak phase transition
- Process by which the Higgs 'switched on'
- In the Standard Model it is a crossover
- Possible in extensions that it would be first
order
➥ colliding bubbles then make gravitational waves
Using dimensional reduction
- At high $T$, system looks 3D at distances $\Delta x
\gg 1/T$
- Match Green's functions at each step to desired order
- Handles the infrared problem, light fields can be
studied on lattice arXiv:hep-ph/9508379
The electroweak phase transition
- Simulate DR'ed 3D theory
on
lattice arXiv:hep-let/9510020
- With DR, can integrate out heavy new physics and study simpler model
How to get strong transitions?
Theories that look SM-like in the IR ⇒ not observable!
arXiv:1903.11604
Lattice Monte Carlo benchmarks
$\Sigma$SM (triplet) example
Perturbation theory doesn't see the
phase transition!
arXiv:2005.11332
Key points so far
- Dimensional reduction + lattice simulations a
well-proven method for studying BSM theories
- Higher dimensional operators or light new
physics needed for a strong phase transition
- Should benchmark perturbation theory with DR +
lattice, particularly for strong transitions
Particle physics model ✅
$\Downarrow \mathcal{L}_{4\mathrm{d}}$
Dimensional reduction ✅
$\Downarrow \mathcal{L}_{3\mathrm{d}}$
Phase transition parameters from lattice simulations ✅
$\Downarrow \alpha, \beta, T_N, \ldots$
Real time cosmological simulations
$\Downarrow \Omega_\text{gw}(f)$
Cosmological GW background
Particle physics model ✅
$\Downarrow \mathcal{L}_{4\mathrm{d}}$
Dimensional reduction ✅
$\Downarrow \mathcal{L}_{3\mathrm{d}}$
Phase transition parameters from lattice simulations ✅
$\Downarrow \alpha, \beta, T_N, \ldots$
Real time cosmological simulations
$\Downarrow \Omega_\text{gw}(f)$
Cosmological GW background
Model-independent parameters bridge the gap
Including:
- $\alpha$, the phase transition strength
- $\beta$, the inverse phase transition duration
- $T_N$, the temperature at which bubbles nucleate
- $v_\mathrm{w}$, the speed at which bubbles expand
How the wall moves
- In EWPT: equation of motion is (schematically)
PRD 46 2668; hep-ph/9503296; arXiv:1407.3132; ...
$$ \partial^2 \phi + V_\text{eff}'(\phi,T) +
\sum_{i} \frac{d m_i^2}{d \phi} \int
\frac{\mathrm{d}^3 k}{(2\pi)^3 \, 2 E_i} \delta f_i(\mathbf{k},\mathbf{x}) = 0$$
- $V_\text{eff}'(\phi)$: gradient of finite-$T$ effective potential
- $\delta f_i(\mathbf{k},\mathbf{x})$: deviation from equilibrium phase space density of $i$th
species
- $m_i$: effective mass of $i$th species
Force interpretation
$$ \overbrace{\partial_\mu T^{\mu\nu}}^\text{Force on $\phi$} -
\overbrace{\int \frac{d^3 k}{(2\pi)^3}
f(\mathbf{k}) F^\nu }^\text{Force on particles}= 0 $$
This equation is the realisation of this idea:
Field-fluid system
Using a flow ansatz for the wall-plasma system:
$$ \overbrace{\partial_\mu T^{\mu\nu}}^\text{Field part} -
\overbrace{\int \frac{d^3 k}{(2\pi)^3}
f(\mathbf{k}) F^\nu }^\text{Fluid part}= 0 $$
i.e.:
$$ \partial_\mu T^{\mu\nu}_\phi + \partial_\mu
T^{\mu\nu}_\text{fluid} = 0 $$
Can simulate as effective model of field $\phi$ + fluid $u^\mu$
astro-ph/9309059
Relativistic hydro sim example
But fitting everything in is hard
Model ⟶ ($\alpha$, $\beta$, $T_N$, $v_\mathrm{w}$ ) ⟶ this plot
arXiv:1910.13125
Strong deflagrations ⇒ droplets
[$\alpha_{T_*} = 0.34$, $v_\mathrm{w} = 0.24$
(deflag.)], velocity $\mathbf{v}$
Droplets form ➤ walls slow down
At large $\alpha_{T_*}$ reheated droplets form in front of the walls
Droplets may suppress GWs
Suppression compared to sound waves (redder = worse)
arXiv:1906.00480
Sound waves ➤ acoustic turbulence
- Thermal phase transitions produce sound waves
- Over time, sound waves steepen into shocks
- Overlapping field of shocks = 'acoustic
turbulence'
- Distinct from, but related to Kolmogorov turbulence
arXiv:2112.12013
Acoustic turbulence: GWs
Spectral shape $S$ as function of
$k$ and integral scale $L_0$:
Different from sound waves and Kolmogorov turbulence!
⇒ all must be taken into consideration.
Thanks
- Students:
Jani Dahl, Anna Kormu, Riikka Seppä,
Satumaaria Sukuvaara, Essi Vilhonen
- Postdocs:
Daniel Cutting, Oliver Gould
- Collaborators:
Jonathan Kozaczuk, Mark Hindmarsh,
Stephan Huber, Lauri Niemi, Hiren Patel, Michael Ramsey-Musolf, Kari Rummukainen, Tuomas Tenkanen
Key point: need simulations to understand nonlinearities
- Nonlinearities include:
- Turbulence (Kolmogorov-type and
acoustic)
- 'Hot droplets'
- Consequences for
- Observables [e.g. gravitational waves]
- Processes [e.g. baryogenesis]
What I want you to remember
- Dimensional reduction is a valuable
field theory tool
$\Rightarrow$ lattice Monte Carlo simulations of phase transitions
- Nonlinearities matter when studying phase transitions
$\Rightarrow$ large-scale real-time cosmological simulations
More questions you can ask me
- How accurate are bubble nucleation calculations?
- What are the consequences of droplet formation?
- What about other types of turbulence?
When new physics is
heavy
Benchmark: ● 4d PT vs ● 3d PT vs ● NP (lattice)
arXiv:1903.11604
Isolated spherical
droplets
In the spherical case, we can get a self-similar
droplet. We see the same wall velocity slowdown: