Aim of today's talk:
	  A brief introduction to the simulations needed to understand early universe phase transitions
	
	  
	
	  Particle physics model
	    $\Downarrow \mathcal{L}_{4\mathrm{d}}$ 
	    Dimensional reduction
	    $\Downarrow \mathcal{L}_{3\mathrm{d}}$ 
	    Phase transition parameters from lattice simulations
	    $\Downarrow \alpha, \beta, T_N, \ldots$ 
	    Real time cosmological simulations
	    $\Downarrow \Omega_\text{gw}(f)$
	    Cosmological GW background
	  
	  
	
	
	
	  Particle physics model
	    $\Downarrow \mathcal{L}_{4\mathrm{d}}$ 
	    Dimensional reduction
	    $\Downarrow \mathcal{L}_{3\mathrm{d}}$ 
	    Phase transition parameters from lattice simulations
	    
	    $\Downarrow \alpha, \beta, T_N, \ldots$ 
	    Real time cosmological simulations
	    $\Downarrow \Omega_\text{gw}(f)$
	    Cosmological GW background
	    
	  
	  
	
	
	  Focus on extensions of the Standard Model
	  $$ \mathcal{L}_{4\mathrm{d}} =
	  \mathcal{L}_\text{SM}[\text{SM fields}] 
	  \color{red}{+ \mathcal{L}_\text{BSM}[\text{SM fields},\ldots ?]} $$
		 
        
            SM electroweak phase transition
            
              - Process by which the Higgs 'switched on'
- In the Standard Model it is a crossover
- Possible in extensions that it would be first
                order
 ➥ colliding bubbles then make gravitational waves
            ![]() 
            ![]()
            
        
        
          Using dimensional reduction
	  - At high $T$, system looks 3D at distances $\Delta x
	      \gg 1/T$
- Match Green's functions at each step to desired order
- Handles the infrared problem, light fields can be
	      studied on lattice arXiv:hep-ph/9508379
The electroweak phase transition
     
       - Simulate DR'ed 3D theory
              on
         lattice arXiv:hep-let/9510020
              ![]()  
- With DR, can integrate out heavy new physics and study simpler model
How to get strong transitions?
	  ![]() 
	  
	  Theories that look SM-like in the IR ⇒ not observable!
	  	  arXiv:1903.11604
	
	
	  Lattice Monte Carlo benchmarks
	    $\Sigma$SM (triplet) example
	  ![]() 
	  ![]() 
	  Perturbation theory doesn't see the
	  phase transition!
	  arXiv:2005.11332
	
	
	
	  Key points so far
	  
	    - Dimensional reduction + lattice simulations a
	      well-proven method for studying BSM theories
- Higher dimensional operators or light new
	      physics needed for a strong phase transition
- Should benchmark perturbation theory with DR +
	      lattice, particularly for strong transitions
	    Particle physics model ✅
	    $\Downarrow \mathcal{L}_{4\mathrm{d}}$ 
	    Dimensional reduction  ✅ 
	    $\Downarrow \mathcal{L}_{3\mathrm{d}}$
	    Phase transition parameters from lattice simulations  ✅ 
	    $\Downarrow \alpha, \beta, T_N, \ldots$
	    Real time cosmological simulations
	    $\Downarrow \Omega_\text{gw}(f)$
	    Cosmological GW background
	  
	  
	
	
	  
	    	    
	    Particle physics model ✅
	    $\Downarrow \mathcal{L}_{4\mathrm{d}}$ 
	    Dimensional reduction  ✅ 
	    $\Downarrow \mathcal{L}_{3\mathrm{d}}$
	    Phase transition parameters from lattice simulations  ✅ 
	    
	    $\Downarrow \alpha, \beta, T_N, \ldots$ 
	    Real time cosmological simulations
	    $\Downarrow \Omega_\text{gw}(f)$
	    Cosmological GW background
	  
	  
	
	
	  Model-independent parameters bridge the gap
	  Including:
	  
	    - $\alpha$, the phase transition strength
- $\beta$, the inverse phase transition duration
- $T_N$, the temperature at which bubbles nucleate
- $v_\mathrm{w}$, the speed at which bubbles expand
How the wall moves
	    
	      - In EWPT: equation of motion is (schematically)
		
 PRD 46 2668; hep-ph/9503296; arXiv:1407.3132; ...
		$$ \partial^2 \phi + V_\text{eff}'(\phi,T) +
		\sum_{i} \frac{d m_i^2}{d \phi} \int
		\frac{\mathrm{d}^3 k}{(2\pi)^3 \, 2 E_i} \delta f_i(\mathbf{k},\mathbf{x}) = 0$$
		  - $V_\text{eff}'(\phi)$: gradient of finite-$T$ effective potential
- $\delta f_i(\mathbf{k},\mathbf{x})$: deviation from equilibrium phase space density of $i$th
		    species
- $m_i$: effective mass of $i$th species
		  
 
Force interpretation
	  $$ \overbrace{\partial_\mu T^{\mu\nu}}^\text{Force on $\phi$} -
	  \overbrace{\int \frac{d^3 k}{(2\pi)^3}
	  f(\mathbf{k}) F^\nu }^\text{Force on particles}= 0 $$
	  
	  This equation is the realisation of this idea:
	  ![]() 
	
	
	  Field-fluid system
	  Using a flow ansatz for the wall-plasma system:
	  $$ \overbrace{\partial_\mu T^{\mu\nu}}^\text{Field part} -
	  \overbrace{\int \frac{d^3 k}{(2\pi)^3}
	  f(\mathbf{k}) F^\nu }^\text{Fluid part}= 0 $$
	  i.e.:
	  $$ \partial_\mu T^{\mu\nu}_\phi + \partial_\mu
	  T^{\mu\nu}_\text{fluid} = 0 $$
	  Can simulate as effective model of field $\phi$ + fluid $u^\mu$
		  astro-ph/9309059 
	
	
	  Relativistic hydro sim example
	  
	
	
	
	    
	      But fitting everything in is hard
	      ![]() 
	    
	
	
          
                  Model ⟶ ($\alpha$, $\beta$, $T_N$, $v_\mathrm{w}$ ) ⟶ this plot
          ![]() 
	  arXiv:1910.13125
        
	
	
        
          Strong deflagrations ⇒ droplets
          [$\alpha_{T_*} = 0.34$, $v_\mathrm{w} = 0.24$
          (deflag.)], velocity $\mathbf{v}$
          
        	
       
          Droplets form ➤ walls slow down
          At large $\alpha_{T_*}$ reheated droplets form in front of the walls
	            ![]() 
       
       
	 Droplets may suppress GWs
	 Suppression compared to sound waves (redder = worse)
         ![]() 
	 arXiv:1906.00480
       
       
       
	 Sound waves ➤ acoustic turbulence
	 
	   - Thermal phase transitions produce sound waves
- Over time, sound waves steepen into shocks
- Overlapping field of shocks = 'acoustic
	   turbulence'
- Distinct from, but related to Kolmogorov turbulence
arXiv:2112.12013
       
       
       
	 Acoustic turbulence: GWs
	 Spectral shape $S$ as function of
	   $k$ and integral scale $L_0$:
	 ![]() 
	 Different from sound waves and Kolmogorov turbulence!
	 ⇒ all must be taken into consideration.
       
	
	  Thanks
	  
		- Students: 
 Jani Dahl, Anna Kormu, Riikka Seppä,
		  Satumaaria Sukuvaara, Essi Vilhonen
- Postdocs: 
 Daniel Cutting, Oliver Gould
- Collaborators: 
 Jonathan Kozaczuk, Mark Hindmarsh,
		    Stephan Huber, Lauri Niemi, Hiren Patel, Michael Ramsey-Musolf, Kari Rummukainen, Tuomas Tenkanen
![]() 
	
	
	
	  Key point: need simulations to understand nonlinearities
	  
	    
	      - Nonlinearities include:
		
		  - Turbulence (Kolmogorov-type and
		    acoustic)
- 'Hot droplets'
 
- Consequences for
		
		  - Observables [e.g. gravitational waves]
- Processes [e.g. baryogenesis]
 
What I want you to remember
	  
	    - Dimensional reduction is a valuable
	      field theory tool 
 $\Rightarrow$ lattice Monte Carlo simulations of phase transitions
- Nonlinearities matter when studying phase transitions
 $\Rightarrow$ large-scale real-time cosmological simulations
	  More questions you can ask me
	  
	    - How accurate are bubble nucleation calculations?
- What are the consequences of droplet formation?
- What about other types of turbulence?
 When new physics is
	    heavy
	  ![]() 
	  Benchmark: ● 4d PT vs ● 3d PT vs ● NP (lattice)
	  	  arXiv:1903.11604
		  
	
	 Isolated spherical
	   droplets
	 In the spherical case, we can get a self-similar
	 droplet. We see the same wall velocity slowdown:
	 ![]()