From which effective magnetic field and charge is
$$B_i = \frac{1}{2} \epsilon_{ijk} \alpha_{jk}; \qquad \rho_{\mathrm{M}}= \sum_{i=1}^3 [B_i(x+\hat{\imath}) - B_i(x)] $$
Winding number through a plaquette in the $ij$-plane at
$x$ is then
$$Y_{ij}(x) = \delta_i(x) + \delta_j(x+\hat{\imath})
- \delta_i(x+\hat{\jmath}) - \delta_j(x) - g \alpha_{ij}(x). $$
We can trace this (and the monopoles) through the
lattice.
Running the simulations
"Naive" random initial conditions (memory soon lost).
Then some heavy damping in a Minkowski
background.
And 'core growth' (run equations with
$s=-1$).
$1920^3$ lattices, run for one light crossing
time.
Gauss Law OK, energy conservation < 1%.
Extra: string velocities
Extra: monopole velocities
Extra: $r$
Define the linear monopole density $n$ in units of
$d_\mathrm{BV}$,
$$ r = d_\mathrm{BV} \frac{n}{a}, \quad \text{where} \quad d_\mathrm{BV} =
\frac{M_\mathrm{m}}{\mu} $$
and the network energy density is
$$ \rho_n \simeq \frac{\mu}{\xi_\mathrm{s}^2}(1+r). $$
So $r$ gives the ratio of energy density in strings
to monopoles.
If $\xi_\mathrm{s} \propto \tau$ and $r$ constant,
monopoles are a constant fraction of the total energy.