David J. Weir [they/he]
University of Helsinki
This talk: saoghal.net/slides/blois2023
34th Rencontres de Blois
Source: arXiv:1702.00786
[qualitative curve, sketched on]
By considering how GWs get redshifted on the way to us, and assuming they get produced at cosmological scales:
Event | Time (s) | Temp (GeV) | g∗ | Frequency (Hz) |
---|---|---|---|---|
QCD phase transition | 10−3 | 0.1 | ∼10 | 10−8 |
EW phase transition | 10−11 | 100 | ∼100 | 10−5 LISA! |
??? | 10−25 | 109 | ≳ | 100 |
End of inflation | \gtrsim 10^{-36} | \lesssim 10^{16} | \gtrsim 100 | \gtrsim 10^8 |
[order-of-magnitude calculation!]
arXiv:2008.09136
First-order phase transitions are a
[what BSM physics might there be?]
Particle physics model
\Downarrow \mathcal{L}_{4\mathrm{d}}
Dimensional reduction
\Downarrow \mathcal{L}_{3\mathrm{d}}
Phase transition parameters
from lattice simulations
\Downarrow \alpha, \beta, T_N, v_\mathrm{w}, \ldots
Real time cosmological simulations
\Downarrow \Omega_\text{gw}(f)
Cosmological GW background
[what would we see as a result?]
Particle physics model
\Downarrow \mathcal{L}_{4\mathrm{d}}
Dimensional reduction
\Downarrow \mathcal{L}_{3\mathrm{d}}
Phase transition parameters
from lattice simulations
\Downarrow \alpha, \beta, T_N, v_\mathrm{w}, \ldots
Real time cosmological simulations
\Downarrow \Omega_\text{gw}(f)
Cosmological GW background
Particle physics model
\Downarrow \mathcal{L}_{4\mathrm{d}}
Dimensional reduction
\Downarrow \mathcal{L}_{3\mathrm{d}}
Phase transition parameters
from lattice simulations
\Downarrow \alpha, \beta, T_N, v_\mathrm{w}, \ldots
Real time cosmological simulations
\Downarrow \Omega_\text{gw}(f)
Cosmological GW background
Need for accuracy: \SigmaSM (triplet) example arXiv:2005.11332
Perturbation theory out by 10% or more!
Particle physics model ✅
\Downarrow \mathcal{L}_{4\mathrm{d}}
Dimensional reduction ✅
\Downarrow \mathcal{L}_{3\mathrm{d}}
Phase transition parameters from lattice simulations ✅
\Downarrow \alpha, \beta, T_N, v_\mathrm{w}, \ldots
Real time cosmological simulations
\Downarrow \Omega_\text{gw}(f)
Cosmological GW background
[what BSM physics might there be?]
Particle physics model ✅
\Downarrow \mathcal{L}_{4\mathrm{d}}
Dimensional reduction ✅
\Downarrow \mathcal{L}_{3\mathrm{d}}
Phase transition parameters from lattice simulations ✅
\Downarrow \alpha, \beta, T_N, v_\mathrm{w}, \ldots
Real time cosmological simulations
\Downarrow \Omega_\text{gw}(f)
Cosmological GW background
[what would we see as a result?]
Including:
\text{SNR} = \sqrt{\mathcal{T} \int_{f_\text{min}}^{f_\text{max}} \mathrm{d} f \left[ \frac{h^2 \Omega_\text{GW}(f)}{h^2 \Omega_\text{Sens}(f)}\right]^2}
Still need to handle astrophysical foregrounds properly!
Let's take a look at droplets
[\alpha_{T_*} = 0.34, v_\mathrm{w} = 0.24 (deflag.)], velocity \mathbf{v}
At large \alpha_{T_*} reheated droplets form in front of the walls