David J. Weir [they/he]
University of Helsinki
This talk: saoghal.net/slides/blois2023
34th Rencontres de Blois
Source: arXiv:1702.00786
[qualitative curve, sketched on]
By considering how GWs get redshifted on the way to us, and assuming they get produced at cosmological scales:
Event | Time (s) | Temp (GeV) | $\mathbf{g}_*$ | Frequency (Hz) |
---|---|---|---|---|
QCD phase transition | $10^{-3}$ | $0.1$ | $\sim 10$ | $10^{-8}$ |
EW phase transition | $10^{-11}$ | $100$ | $\sim 100$ | $10^{-5}$ LISA! |
??? | $10^{-25}$ | $10^9$ | $\gtrsim 100$ | $100$ |
End of inflation | $\gtrsim 10^{-36}$ | $\lesssim 10^{16}$ | $\gtrsim 100$ | $\gtrsim 10^8$ |
[order-of-magnitude calculation!]
arXiv:2008.09136
First-order phase transitions are a
[what BSM physics might there be?]
Particle physics model
$\Downarrow \mathcal{L}_{4\mathrm{d}}$
Dimensional reduction
$\Downarrow \mathcal{L}_{3\mathrm{d}}$
Phase transition parameters
from lattice simulations
$\Downarrow \alpha, \beta, T_N, v_\mathrm{w}, \ldots$
Real time cosmological simulations
$\Downarrow \Omega_\text{gw}(f)$
Cosmological GW background
[what would we see as a result?]
Particle physics model
$\Downarrow \mathcal{L}_{4\mathrm{d}}$
Dimensional reduction
$\Downarrow \mathcal{L}_{3\mathrm{d}}$
Phase transition parameters
from lattice simulations
$\Downarrow \alpha, \beta, T_N, v_\mathrm{w}, \ldots$
Real time cosmological simulations
$\Downarrow \Omega_\text{gw}(f)$
Cosmological GW background
Particle physics model
$\Downarrow \mathcal{L}_{4\mathrm{d}}$
Dimensional reduction
$\Downarrow \mathcal{L}_{3\mathrm{d}}$
Phase transition parameters
from lattice simulations
$\Downarrow \alpha, \beta, T_N, v_\mathrm{w}, \ldots$
Real time cosmological simulations
$\Downarrow \Omega_\text{gw}(f)$
Cosmological GW background
Need for accuracy: $\Sigma$SM (triplet) example arXiv:2005.11332
Perturbation theory out by 10% or more!
Particle physics model ✅
$\Downarrow \mathcal{L}_{4\mathrm{d}}$
Dimensional reduction ✅
$\Downarrow \mathcal{L}_{3\mathrm{d}}$
Phase transition parameters from lattice simulations ✅
$\Downarrow \alpha, \beta, T_N, v_\mathrm{w}, \ldots$
Real time cosmological simulations
$\Downarrow \Omega_\text{gw}(f)$
Cosmological GW background
[what BSM physics might there be?]
Particle physics model ✅
$\Downarrow \mathcal{L}_{4\mathrm{d}}$
Dimensional reduction ✅
$\Downarrow \mathcal{L}_{3\mathrm{d}}$
Phase transition parameters from lattice simulations ✅
$\Downarrow \alpha, \beta, T_N, v_\mathrm{w}, \ldots$
Real time cosmological simulations
$\Downarrow \Omega_\text{gw}(f)$
Cosmological GW background
[what would we see as a result?]
Including:
$\text{SNR} = \sqrt{\mathcal{T} \int_{f_\text{min}}^{f_\text{max}} \mathrm{d} f \left[ \frac{h^2 \Omega_\text{GW}(f)}{h^2 \Omega_\text{Sens}(f)}\right]^2} $
Still need to handle astrophysical foregrounds properly!
Let's take a look at droplets
[$\alpha_{T_*} = 0.34$, $v_\mathrm{w} = 0.24$ (deflag.)], velocity $\mathbf{v}$
At large $\alpha_{T_*}$ reheated droplets form in front of the walls