David J. Weir [they/he]
	    
	    University of Helsinki
	  
This talk: saoghal.net/slides/spåtind2023
27th Nordic Particle Physics Meeting, 6.1.2023
Source: arXiv:1702.00786
[qualitative curve, sketched on]
By considering how GWs get redshifted on the way to us, and assuming they get produced at cosmological scales:
First-order phase transitions are a 
[what BSM physics might there be?]
	    Particle physics model
	    
	    $\Downarrow \mathcal{L}_{4\mathrm{d}}$ 
	    Dimensional reduction
	    $\Downarrow \mathcal{L}_{3\mathrm{d}}$ 
	    Phase transition parameters
from lattice simulations
	    $\Downarrow \alpha, \beta, T_N, v_\mathrm{w}, \ldots$ 
	    Real time cosmological simulations
	    $\Downarrow \Omega_\text{gw}(f)$
	    
	    Cosmological GW background
	    [what would we see as a result?]
	  
Particle physics model
	    $\Downarrow \mathcal{L}_{4\mathrm{d}}$ 
	    Dimensional reduction
	    $\Downarrow \mathcal{L}_{3\mathrm{d}}$ 
	    Phase transition parameters
from lattice simulations
	    $\Downarrow \alpha, \beta, T_N, v_\mathrm{w}, \ldots$ 
	    Real time cosmological simulations
	    $\Downarrow \Omega_\text{gw}(f)$
	    Cosmological GW background
	  
Particle physics model
	    $\Downarrow \mathcal{L}_{4\mathrm{d}}$ 
	    Dimensional reduction
	    $\Downarrow \mathcal{L}_{3\mathrm{d}}$ 
	    Phase transition parameters
from lattice simulations
	    
	    $\Downarrow \alpha, \beta, T_N, v_\mathrm{w}, \ldots$ 
	    Real time cosmological simulations
	    $\Downarrow \Omega_\text{gw}(f)$
	    Cosmological GW background
	    
	  
            
            
            
	    Need for accuracy: $\Sigma$SM (triplet) example arXiv:2005.11332
Perturbation theory out by 10% or more!
	    Particle physics model ✅
	    $\Downarrow \mathcal{L}_{4\mathrm{d}}$ 
	    Dimensional reduction  ✅ 
	    $\Downarrow \mathcal{L}_{3\mathrm{d}}$
	    Phase transition parameters from lattice simulations  ✅ 
	    $\Downarrow \alpha, \beta, T_N, v_\mathrm{w}, \ldots$
	    Real time cosmological simulations
	    $\Downarrow \Omega_\text{gw}(f)$
	    Cosmological GW background
	  
	    
	    Particle physics model ✅
	    $\Downarrow \mathcal{L}_{4\mathrm{d}}$ 
	    Dimensional reduction  ✅ 
	    $\Downarrow \mathcal{L}_{3\mathrm{d}}$
	    Phase transition parameters from lattice simulations  ✅ 
	    
	    $\Downarrow \alpha, \beta, T_N, v_\mathrm{w}, \ldots$ 
	    Real time cosmological simulations
	    $\Downarrow \Omega_\text{gw}(f)$
	    Cosmological GW background
	  
Including:
              
              
              
Those simulations yield GW spectra like (sound waves):
[NB: curves scaled by $t$: collapse = constant emission]
$\text{SNR} = \sqrt{\mathcal{T} \int_{f_\text{min}}^{f_\text{max}} \mathrm{d} f \left[ \frac{h^2 \Omega_\text{GW}(f)}{h^2 \Omega_\text{Sens}(f)}\right]^2} $
Still need to handle astrophysical foregrounds properly!
Let's take a look at droplets and acoustic turbulence
[$\alpha_{T_*} = 0.34$, $v_\mathrm{w} = 0.24$ (deflag.)], velocity $\mathbf{v}$
At large $\alpha_{T_*}$ reheated droplets form in front of the walls
Suppression compared to sound waves (redder = worse)
Spectral shape $S$ as function of $k$ and integral scale $L_0$:
Different from sound waves and Kolmogorov turbulence!
	 ⇒ all must be taken into consideration.