What happened in the early universe?
when the universe
was optically opaque?
in dark sectors?
Start of the GW astrophysics era
After LIGO comes LISA
Three laser arms,
2.5 M km separation
ESA-NASA
mission, launch by 2034
Mission adopted 2017
arXiv:1702.00786
LISA: "Astrophysics" signals
LISA: Early Universe Cosmology
Science Investigation 7.2: Measure, or set upper
limits on, the spectral shape of the cosmological stochastic
GW background.
Operational Requirement 7.2: Probe a broken
power-law stochastic background from the early Universe as
predicted, for example, by first order phase
transitions ...
We're getting ahead of ourselves...
Electroweak phase transition
Process by which the Higgs 'switched on'
In the Standard Model it is a crossover
Possible in extensions that it would be first
order
➥ colliding bubbles then make gravitational waves
Can also be probed with experimental particle physics
Source: arXiv:1206.2942
EW PT in the SM
Work in the 1990s found this phase diagram for the SM:
At $m_H = 125 \, \mathrm{GeV}$, SM is a crossover
Kajantie et
al. ; Gurtler et al. ;
Csikor et al. ;
...
How? Dimensional reduction
At high $T$, system looks 3D at distances $\Delta x \gg 1/T$
Decomposition of fields into Matsubara modes:
$$ \phi(\tau, \mathbf{x}) = T \sum_{n=-\infty}^{\infty}
\tilde{\phi}_n(\mathbf{x}) e^{i \omega_n \tau}; \quad \omega_n =
\begin{cases}
2n \pi T & \text{bosons} \\
(2n +1) \pi & \text{fermions}
\end{cases}
$$
Integrate out $\omega_n\neq 0$
due to scale separation (heavy modes
$\gtrsim \pi T$)
$$
Z = \int \mathcal{D} \phi_0 \mathcal{D} \phi_n
e^{-S(\phi_0) - S(\phi_0, \phi_n)} \to \int \mathcal{D} \phi_0 e^{-S(\phi_0) -
S_\text{eff}(\phi_0)} $$
Also handles the infrared problem, leaving light
fields to be studied nonperturbatively.
Dimensional reduction: sketch
Each step involves matching Green's functions in the
effective and full theories to the desired order.
Using the dimensional reduction
Simulate DR'ed 3D theory
on lattice Kajantie et al.
Applied to SM very successfully in the 1990s:
NB: if 'new physics' heavy, can be integrated out
in DR
DR: xSM example
[$Z_2$-symmetric; plot of trilinear higgs-singlet
coupling $\lambda_{221}$ vs. singlet mass eigenstate $m_2$]
Source: arXiv:1903.11604
[with Oliver Gould, Jonathan Kozaczuk, Lauri Niemi, Michael
Ramsey-Musolf and Tuomas Tenkanen]
How the wall moves
In EWPT: equation of motion is (schematically)
PRD 46 2668 ; hep-ph/9503296 ; arXiv:1407.3132 ; ...
$$ \partial^2 \phi + V_\text{eff}'(\phi,T) +
\sum_{i} \frac{d m_i^2}{d \phi} \int
\frac{\mathrm{d}^3 k}{(2\pi)^3 \, 2 E_i} \delta f_i(\mathbf{k},\mathbf{x}) = 0$$
$V_\text{eff}'(\phi)$: gradient of finite-$T$ effective potential
$\delta f_i(\mathbf{k},\mathbf{x})$: deviation from equilibrium phase space density of $i$th
species
$m_i$: effective mass of $i$th species
Force interpretation
$$ \overbrace{\partial_\mu T^{\mu\nu}}^\text{Force on $\phi$} -
\overbrace{\int \frac{d^3 k}{(2\pi)^3}
f(\mathbf{k}) F^\nu }^\text{Force on particles}= 0 $$
This equation is the realisation of this idea:
Field-fluid system
Using a flow ansatz for the wall-plasma system:
$$ \overbrace{\partial_\mu T^{\mu\nu}}^\text{Field part} -
\overbrace{\int \frac{d^3 k}{(2\pi)^3}
f(\mathbf{k}) F^\nu }^\text{Fluid part}= 0 $$
i.e.:
$$ \partial_\mu T^{\mu\nu}_\phi + \partial_\mu
T^{\mu\nu}_\text{fluid} = 0 $$
Can simulate as effective model of field $\phi$ + fluid $u^\mu$
astro-ph/9309059
Key parameters for GW production
$T_*$, temperature
$T_* \sim 100 \, \mathrm{GeV} \longrightarrow
\mathrm{mHz}$ today
$\alpha_{T_*}$, vacuum energy fraction
$\alpha_{T_*} \ll 1$: 'weak'
$\alpha_{T_*} \gtrsim 1$: 'strong'
$v_\mathrm{w}$, bubble wall speed
$\beta/H_*$, 'duration'
$\beta$: inverse phase transition duration
$H_*$: Hubble rate at transition
What sources GWs?
Bubbles nucleate + expand, reaction fronts form, then:
$h^2 \Omega_\phi$ :
Bubbles + shocks collide - 'envelope phase'
$h^2
\Omega_\text{sw}$ : Sound waves set up -
'acoustic phase'
$h^2
\Omega_\text{turb}$ : [MHD] turbulence -
'turbulent phase'
Sources add together to give observed GW power:
$$
h^2 \Omega_\text{GW}
+ h^2 \Omega_\text{sw}
+ h^2 \Omega_\text{turb}$$
Bubbles nucleate + expand, reaction fronts form, then:
$h^2
\Omega_\phi$ : Bubbles + shocks collide
- 'envelope phase'
$h^2
\Omega_\text{sw}$ : Sound waves set up -
'acoustic phase'
$h^2
\Omega_\text{turb}$ : [MHD] turbulence -
'turbulent phase'
Sources add together to give observed GW power:
$$
h^2 \Omega_\text{GW}
+ h^2 \Omega_\text{sw}
+ h^2 \Omega_\text{turb}$$
Why focus on sound waves?
"Envelope phase" is short-lived, one-off
Relevant only in exotic models where $\alpha_{T_*}
\gg 1$ or vacuum transitions...
... but then dynamics aren't so simple arXiv:1802.05712
"Turbulent phase" may never occur if Hubble damping
happens on a shorter timescale
Turbulence: bubble radius/average fluid
velocity
Hubble damping: Hubble time
➤ Focus on the hydrodynamics of the
transition and immediate aftermath.
Velocity profile development: detonation vs deflagration
Deflagration $v_\mathrm{w} < c_\mathrm{s}$
Detonation $v_\mathrm{w} > c_\mathrm{s}$
Simulation slice example
[$\alpha_{T_*} = 0.01$, $v_\mathrm{w} = 0.68$ (detonation)]
Velocity power spectra
$v_\mathrm{w} < c_\mathrm{s}$
$v_\mathrm{w} > c_\mathrm{s}$
GW power spectra
[curves scaled by $t$]
$v_\mathrm{w} < c_\mathrm{s}$
$v_\mathrm{w} > c_\mathrm{s}$
Putting it all together - $h^2 \Omega_\text{gw}$
For any theory, can get $T_*$, $\alpha_{T_*}$,
$\beta/H_*$, $v_\mathrm{w}$ arXiv:1004.4187
It's then easy to predict the
signal...
(example, $T_* = 200~\mathrm{GeV}$, $\alpha_{T_*} =
0.1$, $v_\mathrm{w} =0.9$, $\beta/H_* = 50$)
$\mathrm{SNR} = 27$ ☺️
[From ptplot.org
/ arXiv:1910.13125 ]
Model ⟶ ($T_*$, $\alpha_{T_*}$,
$v_\mathrm{w}$, $\beta$) ⟶ this plot
[Here: $Z_2$-symmetric
xSM points
from arXiv:1910.13125 ]
Strong transitions
$\alpha_{T_*} \sim 1$
arXiv:1906.00480
[with Daniel Cutting, Mark Hindmarsh]
Fluid profile around the wall
Deflagration $v_\mathrm{w} < c_\mathrm{s}$
Detonation $v_\mathrm{w} > c_\mathrm{s}$
Deflagration $v_\mathrm{w} < c_\mathrm{s}$
Detonation $v_\mathrm{w} > c_\mathrm{s}$
Strong simulation slice 1
[$\alpha_{T_*} = 0.5$, $v_\mathrm{w} = 0.92$
(detonation)], velocity $\mathbf{v}$
Fluid profile around the wall
Deflagration $v_\mathrm{w} < c_\mathrm{s}$
Detonation $v_\mathrm{w} > c_\mathrm{s}$
Strong simulation slice 2
[$\alpha_{T_*} = 0.5$, $v_\mathrm{w} = 0.44$
(deflag.)], velocity $\mathbf{v}$
Strong deflagrations: walls slow
At large $\alpha_{T_*}$ reheated droplets form in front of the walls
Strong simulation slice 3
[$\alpha_{T_*} = 0.34$, $v_\mathrm{w} = 0.24$
(deflag.)], vorticity $\nabla \times \mathbf{v}$
Strong deflagrations: vortical modes
GW production can be suppressed
Suppression relative to LISA CosWG ansatz
🚰 A pipeline
Choose your model
(e.g. SM, xSM, 2HDM, ...)
Dim. red. model
Kajantie et al.
Phase diagram ($\alpha_{T_*}$, $T_*$);
lattice: Kajantie et
al.
Nucleation rate ($\beta$) + Sphaleron
rate;
lattice: Moore and
Rummukainen
Wall velocities ($v_\text{wall}$)
Moore and
Prokopec; Kozaczuk
GW power spectrum
$\Omega_\mathrm{gw}$
🔧 Not watertight, even for SM!
Conclusions
Weak transitions: good estimates of
power spectrum
☛ ptplot.org
Strong transitions still an emerging topic:
☛ acoustic gravitational wave production suppressed
Causes: vortical mode production and slower walls
Worst for large $\alpha_{T_*}$, small
$v_\mathrm{w}$
Turbulence still a challenge, work ongoing
In any case: LISA provides a model-independent probe of
first-order phase transitions around
$100~\mathrm{GeV}$
☛ ... but new physics must be dynamical