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What was known

◮ First-order phase transitions (say, at the electroweak
scale in extended models) are a source of GWs.

◮The power spectrum of gravitational waves produced
during bubble collisions can be calculated by the
‘envelope approximation’2.

What this work adds

◮Overlapping acoustic waves in the plasma of light
particles are a stronger source than the collisions
themselves.

◮The scale and behaviour of this source is characterised
by moments of the fluid power spectrum.

Next steps

◮Gravitational waves from electroweak phase transitions
are a strong candidate for detection by eLISA and other
missions.

◮Quantitative predictions for particular models are
required, this will require new methods.

Basics: field+fluid system

◮ Stress energy tensor for field φ and fluid with 4-velocity Uµ

T µν = ∂µφ∂νφ− gµν
[
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◮ Effective potential with parameters γ, α, λ and T0
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◮Rest-frame energy density ǫ and pressure p, with a = (π2/90)g

ǫ = 3aT 4 + V (φ, T )− T
∂V

∂T
; p = aT 4 − V (φ, T ).

◮ Evolution equations are (W is the relativistic γ-factor)
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– the η parameter varies the friction.

◮ Evolve unprojected perturbations

üij −∇2uij = 16πG(τφij + τ fij),

where τφij = ∂iφ∂jφ and τ fij = W 2(ǫ+ p)ViVj are the field and fluid sources respectively.
Use the projection technique of Ref. 3 to get the true metric perturbations.

Bubble nucleation and growth

◮ Simulated nucleation takes place by attempting to nucleate bubbles of scalar field with
probability P = P0 exp(β(t− t0)) per unit volume and time.

◮ For different values of η the bubble wall moves at different velocities vw.

◮Can form detonations (vw > cs) or deflagrations (vw < cs) depending on η.

◮The potential parameters control the strength of the phase transition αTN
; more latent

heat → higher fluid velocities.

◮We work with two choices of potential that we term weak (αTN
≈ 0.01) and

intermediate (αTN
≈ 0.1).

◮At right, fluid velocity profile as a function of
scaled radius ξ = r/t (taken from Ref. 4) for the
weak-strength potential parameters

◮The bubble wall velocity vw increases as η is
decreased; both detonations and deflagrations are
possible.

◮ For our intermediate case, the fluid velocities v
are about ten times larger, but the qualitative
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What is the appropriate length scale?

◮Define dimensionless quantities Uφ and U f that show relative importance of the field
and the fluid respectively to gravitational wave production.

(ǭ + p̄)Ū 2
φ =

1

V

∫

d3x τφii and (ǭ + p̄)Ū 2
f =

1

V

∫

d3x τ fii

◮Also, define the integral scale,

ξI =

∫

d3k k−1 |vk|
2

∫

d3k |vk|
2

which gives dominant length scale of fluctuations in the fluid without reference to the
fluid profile shape.

Relative importance of fluid and field energies
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Key result: gravitational wave energy grows linearly (due to fluid).

Results: fluid energy density

Slices of fluid energy density E/T 4
c for the η = 0.4 intermediate-strength deflagration at

t = 500T−1
c , t = 750T−1

c and t = 1000T−1
c respectively. Simulation volume 10243 T−3

c .

Recent work

◮ Early work (see above, and Ref. 1) was in small simulation volumes
◮Therefore our more recent simulations have shifted emphasis

◮ Separate field and fluid power spectrum calculation into two separate problems
◮ Concentrate on fluid behaviour
◮ Larger simulation volumes
◮ Nucleate bubbles simultaneously

◮Aim is to see power laws and other scale-invariant behaviour by simulating very large
volumes (up to 84003 T−3

c ); comparison with results in Ref. 5.

◮By rescaling our parameters, we can make the bubble spacing physical.

◮Diagrammatic approach? See Ref. 6.

Recent results: gravitational wave power spectrum; power laws

◮The power spectrum per logarithmic frequency interval is given by

dρGW(k)
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GW power spectrum for η = 0.2 deflagration:
1000 bubbles nucleated simultaneously, simulation volume 48003 T−3

c .
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Power spectra are plotted at times t = 500 T−1
c (red), 1000 T−1

c (blue) and 1500 T−1
c (green). Solid lines

show the full gravitational wave power spectrum; dashed lines show the power sourced by the fluid only.

◮Despite the size of our box and the number of bubbles, we have limited resolution in the
IR, so no k3 scaling is visible.

◮The putative k−1 scaling is destroyed by the exponential decay at higher k.

◮Turnover from power law to exponential occurs at inverse wall thickness.

◮ Scalar field dynamics are therefore properly captured by the envelope approximation2.

◮ In future work we can concentrate on understanding the fluid source and avoid
computing the field source.
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