Simulate your non-equilibrium primordial physics (preheating, first order phase transition, etc.)
Evolve Lorenz-gauge wave equation in position space
$$ \nabla^2 h_{ij} (\mathbf{x},t) - \frac{\partial}{\partial t^2}
h_{ij}(\mathbf{x},t) = 8 \pi G T_{ij}^\text{source}(\mathbf{x},t)$$
during simulation, with appropriate $T^\text{source}_{ij}$.
How to compute GWs?
Project to TT gauge only when measurement needed:
$$ h^{\text{TT}}_{ij}(\mathbf{k},t_\text{meas}) = \Lambda_{ij,lm}(\hat{\mathbf{k}}) h^{lm}(\mathbf{k},t) $$
Measure energy density in gravitational waves
$$ \rho_\text{GW}(t_\text{meas}) = \frac{1}{32
\pi G} \left< \dot{h}_{ij}^\text{TT}
\dot{h}_{ij}^\text{TT} \right> $$
Redshift frequencies and energies to today.
How are GWs produced at a first order phase transition?
Not all phase transitions have $v_\mathrm{w} < c$ ...
Sound waves turn into turbulence on a time scale
$$\tau_\text{sh} = \frac{R_*}{\overline{U}} = \frac{\text{Bubble radius (i.e. length scale)}}{\text{Typical fluid velocity}}$$
Using simulation results
Those simulations yield GW spectra like (sound waves):
[NB: curves scaled by $t$: collapse = constant emission]
What matters is the SNR
[Ignoring astrophysical foregrounds here — sneaky!]
$ \text{SNR} = \sqrt{\mathcal{T} \int_{f_\text{min}}^{f_\text{max}} \mathrm{d} f \left[ \frac{h^2 \Omega_\text{GW}(f)}{h^2 \Omega_\text{Sens}(f)}\right]^2} $
A "pipeline"
A "pipeline"
Particle physics model
$\Downarrow \mathcal{L}$
Phase transition parameters from phenomenology
$\Downarrow \alpha, \beta, T_N, \ldots$
Real time cosmological simulations
$\Downarrow \Omega_\text{gw}(f)$ Cosmological GW background
What I want you to remember
Gravitational waves are an important probe of primordial and fundamental physics
Phase transitions in extensions of the Standard Model are one source of such GWs