Image: CC-BY-SA 2.0 Зеленый кабинет
"The total electric flux flowing through a closed surface is proportional to the electric charge inside"
$$ {\large\unicode{x222F}}_S \mathbf{E} \cdot \mathrm{d}\mathbf{A} = \frac{Q}{\varepsilon_0} \vphantom{\iiint_V}$$
$$\require{color} {\large\unicode{x222F}}_S \mathbf{E} \cdot \mathrm{d}\mathbf{A} = {\color{red}\frac{1}{\varepsilon_0}\iiint_V \rho \, \mathrm{d}V} $$
$$ \underbrace{{\large\unicode{x222F}}_S \mathbf{E} \cdot \mathrm{d}\mathbf{A}}_\text{Total electric flux through surface $S$} = \frac{1}{\varepsilon_0} \underbrace{\iiint_V \rho \, \mathrm{d}V}_\text{Charge in volume $V$ bounded by surface $S$} $$
"The flux of a vector field through a surface depends on how the vector field behaves inside the surface"
$$ \iiint_V (\nabla \cdot \mathbf{F}) \, \mathrm{d}V = {\large \unicode{x222F}}_S \mathbf{F} \cdot \mathrm{d}\mathbf{A} $$
Other sources: Khan Academy, Feynman lectures
"Electric field lines start and end on electric charges"
$$ \nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon_0} $$
Images: CC-BY-SA 3.0 Nicoguaro [1], [2] after Gonfer.
Other sources: Hyperphysics, Wikipedia, Bleaney & Bleaney, Feynman lectures.
"The total magnetic flux flowing through a closed surface is always zero"
$$ {\large\unicode{x222F}}_S \mathbf{B} \cdot \mathrm{d}\mathbf{A} = 0$$
"Magnetic field lines never end"
$$ \nabla \cdot \mathbf{B} = 0 $$
Other sources: Hyperphysics, Wikipedia, Bleaney & Bleaney, Feynman lectures.
"A time-varying magnetic flux induces an electric field"
$$ {\large\unicode{x222E}}_{\partial \Sigma} \mathbf{E} \cdot \mathrm{d} \mathbf{l} = - \frac{\partial \Phi_B}{\partial t} \vphantom{\frac{\mathrm{d}}{\mathrm{d}t} \iint_\Sigma} $$
$$\require{color}{\large\unicode{x222E}}_{\partial \Sigma} \mathbf{E} \cdot \mathrm{d} \mathbf{l} = - {\color{red} \frac{\mathrm{d}}{\mathrm{d}t} \iint_\Sigma \mathbf{B} \cdot \mathrm{d} \mathbf{A}} $$
$$ \underbrace{{\large\unicode{x222E}}_{\partial \Sigma} \mathbf{E} \cdot \mathrm{d} \mathbf{l}}_\text{Voltage around closed loop $\partial \Sigma$} = \underbrace{ - \frac{\mathrm{d}}{\mathrm{d} t} \iint_\Sigma \mathbf{B} \cdot \mathrm{d} \mathbf{A}}_\text{Rate of change of magnetic flux through surface $\Sigma$} $$
"The flux of the curl of a vector field through a surface is equal to the integral of the vector field along the boundary of the surface"
$$ \iint_\Sigma (\nabla \times \mathbf{F}) \cdot \mathrm{d}\mathbf{A} = {\large\unicode{x222E}}_{\partial \Sigma} \mathbf{F} \cdot \mathrm{d}\mathbf{l} $$
"A time-varying magnetic field induces an electric field"
$$ \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} $$
Direction of the magnetic field? Lenz'z law.
"Nature works to oppose a change in flux"
Other sources: Hyperphysics, Wikipedia, Bleaney & Bleaney, Feynman lectures.
Video: CC-BY-SA 4.0 Andrejdam.
(actually due to Maxwell!)
$$ {\large\unicode{x222E}}_{\partial \Sigma} \mathbf{B} \cdot \mathrm{d} \mathbf{l} = \mu_0 \iint_\Sigma \mathbf{J} \cdot \mathrm{d}\mathbf{A} $$
Video: CC-BY-SA 4.0 Andrejdam.
"A time-varying electric flux induces a magnetic field"
With the displacement current piece added: $$ \fbox{$ \nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} $} $$
(quick check...) $$ \nabla \cdot (\nabla \times\mathbf{B}) = \mu_0 \big(\underbrace{\nabla \cdot \mathbf{J} + \frac{\partial}{\partial t} \underbrace{\varepsilon_0 \nabla \cdot \mathbf{E}}_{= \rho}}_{ = 0} \big) $$
Other sources: Hyperphysics, Wikipedia, Bleaney & Bleaney, Feynman lectures.
$$ \begin{align} \nabla \cdot \mathbf{E} & = \frac{\rho}{\varepsilon_0} & \text{Gauss's law}\\ \nabla \cdot \mathbf{B} & = 0 \vphantom{\rho_m} \\ \nabla \times \mathbf{E} & = - \frac{\partial \mathbf{B}}{\partial t} & \text{Faraday's law} \\ \nabla \times \mathbf{B} & = \mu_0 \mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} & \text{Ampère's law} \end{align} $$
Other sources: Hyperphysics, Wikipedia, Bleaney & Bleaney, Feynman lectures.
Other sources: Hyperphysics on unification, EM waves; Feynman lectures on EM waves and unification.
Picture: Corinne Mucha [source and further reading]
$$ \begin{align} \nabla \cdot \mathbf{E} & = \frac{\rho}{\varepsilon_0} \\ \nabla \cdot \mathbf{B} & = 0 \vphantom{\rho_m} \\ \nabla \times \mathbf{E} & = - \frac{\partial \mathbf{B}}{\partial t} \\ \nabla \times \mathbf{B} & = \mu_0 \mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} \end{align} $$
$$ \require{color} \begin{align} \nabla \cdot \mathbf{E} & = \frac{\rho_{\color{red}e}}{\varepsilon_0} \\ \nabla \cdot \mathbf{B} & = {\color{red}\rho_m} \\ \nabla \times \mathbf{E} & = - \frac{\partial \mathbf{B}}{\partial t} {\color{red} - \mathbf{J}_m}\\ \nabla \times \mathbf{B} & = \mu_0 \mathbf{J}_{\color{red} e} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} \end{align} $$
More symmetrical!