First-order phase transitions
- Bubbles of stable phase nucleate in metastable phase
- Bubbles then expand and collide
- Out-of-equilibrium: can facilitate baryogenesis
- Collisions produce gravitational waves
[Sketch: Anna Kormu]
LISA: "Astrophysics" signals
LISA: Stochastic background?
BSM phase transition? ⬊
[qualitative curve, sketched on]
[what BSM physics might there be?]
Particle physics model
$\Downarrow \mathcal{L}_{4\mathrm{d}}$
Dimensional reduction
$\Downarrow \mathcal{L}_{3\mathrm{d}}$
Phase transition parameters
from lattice simulations
$\Downarrow \alpha, \beta, T_N, v_\mathrm{w}, \ldots$
Real time cosmological simulations
$\Downarrow \Omega_\text{gw}(f)$
Cosmological GW background
[what would we see as a result?]
Particle physics model
$\Downarrow \mathcal{L}_{4\mathrm{d}}$
Dimensional reduction
$\Downarrow \mathcal{L}_{3\mathrm{d}}$
Phase transition parameters
from lattice simulations
$\Downarrow \alpha, \beta, T_N, v_\mathrm{w}, \ldots$
Real time cosmological simulations
$\Downarrow \Omega_\text{gw}(f)$
Cosmological GW background
Phase transition parameters connect particle physics and cosmology
- $\alpha$, the phase transition strength ($\sim$ latent heat)
- $T_N$, the temperature at which bubbles nucleate
- $\beta$, the inverse phase transition duration
($\sim$ peak nucleation rate)
- $v_\mathrm{w}$, the speed at which bubbles expand
Our focus: nucleation rate
- We compute the bubble nucleation rate $\Gamma$
- Earlier work doing this on the lattice focussed on radiatively induced transitions
hep-ph/0009132; hep-lat/0103036; arXiv:2205.07238
- Current BSM phenomenological interest is in stronger transitions with tree-level barriers, like ours:
$$ \begin{align} \mathscr{L} & = -\frac{1}{2}\partial_{\mu}\varphi\partial^{\mu}\varphi-V(\varphi) - J_1 \varphi - J_2 \varphi^2, \\
V(\varphi) &= \sigma \varphi +\frac{1}{2}m^2\varphi^2+\frac{1}{3!}g\varphi^3+\frac{1}{4!}\lambda\varphi^4 \end{align} $$
Bubbles in the lab
- Another motivation: test classical (non-relativistic) nucleation theory in the laboratory:
- Hints (e.g. from $^{3}\mathrm{He}$) that theory not totally consistent with experiment
- Lattice simulations provide a third path between nucleation theory and analogue experiments
How to compute the nucleation rate
- Use multicanonical simulations to generate order parameter histogram
- Calculate probability of critical bubble $P_\mathrm{c}$ relative to metastable phase
How to compute the nucleation rate
- Evolve critical bubble configurations forward and backward in a heat bath
How to compute the nucleation rate
- Compute fraction $\mathbf{d}$ of configurations that tunnel relative to crossings of $\theta_\mathrm{c}$
$$
\mathbf{d} =
\frac{\delta_{\mathrm{tunnel}}}{N_{\mathrm{crossings}}}
$$
$\delta_{\text{tunnel}}=1$ if bubble tunnels, 0 otherwise
Starting
⬋ point
Critical bubble
Stable phase
Metastable phase
How to compute nucleation rate
- Determine (analytically) rate of change of order parameter across transition surface
($\sim$ set of all critical bubbles in configuration space)
$$ \langle \text{flux} \rangle = \left< \left|\frac{\Delta \theta}{\Delta t} \right|_{\theta_\mathrm{c}} \right> = \sqrt{\frac{8}{\pi \mathcal{V}} (\theta_\mathrm{c} + A^2)}
$$
Then the nucleation rate is
$ \Gamma \mathcal{V} \approx P_\mathrm{c} \langle \text{flux} \rangle \frac{\langle \mathbf{d} \rangle}{2} $
(assuming that $\langle \text{flux} \rangle$ consists of short-range fluctuations
and $\mathbf{d}$ long-range fluctuations hep-lat/0103036 )
Picking a good order parameter
Main results: nucleation rate
• $a\to 0$ with $\smash{L\lambda_3 = 42}$
⬋ Naive order parameter
• Up to $\smash{60^3}$ at $\smash{a\lambda_3 = 1.5}$
Reweighting; comparison with PT
20% discrepancy in $\log \; \Gamma$ $\Rightarrow$ $10^{\text{several}}$ discrepancy in $\Gamma$
Check out Riikka Seppä's poster!
Key points
- Testing nucleation theory is important for particle physics, cosmology (and lab experiments).
- Our potential (with tree level barrier) shows a significant discrepancy with analytical nucleation theory.
- Need a good [quasi]order parameter to suppress bulk fluctuations in multicanonical simulations.